

An Fe-N₂ Complex That Generates Hydrazine and Ammonia via Fe=NNH₂: Demonstrating a Hybrid Distal-to-Alternating Pathway for N_2 Reduction

Jonathan Rittle and Jonas C. Peters*

Division of Chemistry and Chemical Engine[eri](#page-5-0)ng, California Institute of Technology (Caltech), Pasadena, California 91125, United States

S Supporting Information

[AB](#page-5-0)STRACT: Biological N_2 fixation to NH_3 may proceed at one or more Fe sites in the active-site cofactors of nitrogenases. Modeling individual e^{−/H+} transfer steps of iron-ligated N_2 in well-defined synthetic systems is hence of much interest but remains a significant challenge. While iron complexes have been recently discovered that catalyze the formation of NH₃ from N₂, mechanistic details remain uncertain. Herein, we report the synthesis and isolation of a diamagnetic, 5-coordinate $Fe=NNH_2^+$ species supported by a

tris(phosphino)silyl ligand via the direct protonation of a terminally bound Fe-N2 $^-$ complex. The Fe=NNH $_2^{\ast}$ complex is redoxactive, and low-temperature spectroscopic data and DFT calculations evidence an accumulation of significant radical character on the hydrazido ligand upon one-electron reduction to S = $^{1}/_2$ Fe=NNH₂. At warmer temperatures, Fe=NNH₂ rapidly converts to an iron hydrazine complex, Fe-NH₂NH₂⁺, via the additional transfer of proton and electron equivalents in solution. Fe- $\rm NH_2NH_2^+$ can liberate $\rm NH_3$, and the sequence of reactions described here hence demonstrates that an iron site can shuttle from a distal intermediate (Fe=NNH₂⁺) to an alternating intermediate (Fe-NH₂NH₂⁺) en route to NH₃ liberation from N₂. It is interesting to consider the possibility that similar hybrid distal/alternating crossover mechanisms for N_2 reduction may be operative in biological N_2 fixation.

■ INTRODUCTION

The proton-coupled reduction of nitrogen (N_2) to ammonia $(NH₃)$ by nitrogenase enzymes sustains life and has been under study for decades. Known nitrogenases employ a cofactor comprised of seven Fe-atoms and one additional metal site (Mo, V, or Fe).¹ Despite a suite of crystallographic, theoretical, and spectroscopic studies,² the mechanistic details of N_2 reduction and the [me](#page-5-0)tallic site(s) of N_2 coordination are uncertain.

The feasibility of N_2 reduction at an Fe or Mo site has been tested with synthetic model complexes.³ Well-defined Mo systems have been reported to catalyze the direct reduction of N_2 to NH_3 in the presence of proton and [ele](#page-5-0)ctron equivalents,⁴ and our laboratory has recently disclosed Fe complexes that furni[s](#page-5-0)h catalytic yields of NH₃ from N₂.⁵ While synthetic studies of the Mo systems have revealed a number of isolable $Mo(N_xH_y)$ species that infor[m](#page-5-0) likely mechanistic scenarios of N_2 activation and overall reduction, ^{6,4c} similar studies on the Fe catalyzed systems are challenged by the high reactivity of some of the putative $Fe(N_xH_y)$ interme[diat](#page-5-0)es and their varied spin states.

An iron hydrazido $(2-)$ complex, Fe $=$ NNH₂⁺, has been invoked as a likely intermediate in Fe-catalyzed reaction mixtures with a tris(phosphine)borane (TPB) iron system $(TPB = tris(2-(disopropylphosphino)phenyl) borane)).^{5,7} Its$ detection in operando when both strong acid and reductant are present is not feasible; the species is far too reactive und[er s](#page-5-0)uch conditions. We therefore generated $\{ [TPB]Fe = NNH₂ \}^+$ at low temperature by double protonation of ${ [TPB]Fe(N₂)}^-$ in the absence of exogenous reductant and characterized this species with a suite of spectroscopic techniques including EPR/ ENDOR, XAS, and Mössbauer spectroscopies.⁷ ${[\text{TPB}]}\text{Fe}$ NNH_2 ⁺ decays rapidly at temperatures above −78 °C, frustrating our attempts to purify and stud[y](#page-5-0) it by X-ray crystallography and to map its further reactivity patterns.

The complex $\{[\text{SiP}^{\text{iPr}}_3]\text{Fe}(\text{N}_2)\}^ ([\text{SiP}^{\text{iPr}}_3]$ = tris(2-(diisopropylphosphino)phenyl)silyl(−)) is isostructural to the ${[\text{TPB}]}\text{Fe(N}_2)$ [–] catalyst. While catalytic amounts of NH₃ $(7.0(1)$ equiv of NH₃ per Fe) are generated when $\{[TPB]$ Fe- $(N₂)$ [–] is exposed to the originally reported catalytic conditions $(-78 °C)$ in Et₂O, 1 atm N₂, 48 equiv of ${H(OEt_2)_2}{BAr}_{24}^F$, 58 equiv of KC₈), $\{[\text{SiP}^{\text{ip}}_3]\text{Fe}(\text{N}_2)\}^-$ liberates substoichiometric amounts of NH₃ (0.8(1) equiv of NH₃ per Fe) under the same conditions.⁵ We surmised that the doubly protonated form of this species, $\{[\mathrm{SiP^{iPr}_3}] \mathrm{Fe=NNH}_2\}^*$, might be more readily characterized th[an](#page-5-0) ${[\text{TPB}]\text{Fe}}$ =NNH₂⁺ owing to its predicted closed-shell configuration (18-electron species). Herein, we report its synthesis and high-resolution crystal structure. This isolable Fe $=\text{NNH}_{2}^+$ species is derived from protonation of its $Fe(N_2)$ [–] congener. We additionally explore the redox pairs $Fe = NNH_2^+/Fe = NNH_2$ and the methyl analogues $Fe =$ $\mathrm{NNMe}_2^+/\mathrm{Fe}$ = NNMe_2 and demonstrate the overall conversion

Received: February 2, 2016 Published: March 3, 2016

of Fe=NN H_2^+ to N H_3 via an Fe-N $H_2NH_2^+$ intermediate. These observations in sum establish that an iron model system can traverse both distal (Fe=NNH₂) and alternating (Fe- $NH₂NH₂$) intermediates en route to $NH₃$ formation from $N₂$, providing synthetic precedent for a new hybrid distal-toalternating crossover pathway for Fe-mediated N_2 reduction $(Scheme 1).^{7,8}$

Scheme 1. [Dis](#page-5-0)tal and Alternating Pathways for N_2 Reduction, and the Hybrid Crossover Pathway Emphasized Herein

■ RESULTS AND DISCUSSION

As for $\{[\text{TPB}]\text{Fe}(\text{N}_2)\}^{-7}$ the successful protonation of $\text{Fe}(\text{N}_2)$ complexes supported by the \lceil SiP^{iPr}₃ \rceil ligand required very low tem[p](#page-5-0)eratures.⁹ For example, the addition of 1 or 2 equiv of the acid $\{H(OEt_2)_2\} \{BAr^F_{24}\}$ to $\{K(Et_2O)\} \{[SiP^{iPr}_3]Fe(N_2)\}$ (1) at −78 °C r[es](#page-5-0)ulted in the immediate formation of mixtures containing both one-electron oxidized $\left[\mathrm{SiP^{iPr}s}\right]\mathrm{Fe(N_{2})}$ (2) and two-electron oxidized $\{ [\text{SiP}^{\text{iPr}}_3]\text{Fe(N}_2)\} \{ \text{BAr}^{\vec{F}}_{24}\} \hat{ }$ $\hat{ }$ $\hat{ }$ $\hat{ }$ These proton-induced oxidation reactions likely proceed via an unstable and as yet unobserved iron diazenido [s](#page-5-0)pecies, $\left[\text{SiP}^{\text{iPr}}_{3}\right]\text{Fe}(\text{NNH})$ (4), structurally and electronically related to the previously reported and stable silyldiazenido complex, $\left[\text{SiP}^{\text{iPr}}_3\right]\text{Fe}(\text{NNSiM}\hat{\mathbf{e}}_3)$. An alternative hydride product, \overline{S} i \overline{S} i \overline{P} ^E₃]Fe(N₂)(H), that would derive from protonation at iron instead [o](#page-5-0)f N₂ is not observed; $\left[\text{SiP}^{\text{ip}}_3\right]\text{Fe}(\text{N}_2)(\text{H})$ is a very

Scheme 2. Functionalization of $\left[\text{SiP}^{\text{iPr}}_{3}\right]\text{Fe(N)}_{2}$ Complexes

stable complex that has been characterized, 10 and were it produced as the kinetic product of protonation, we would anticipate observing it as it should also be the [th](#page-5-0)ermodynamically preferred isomer.

Combination of 1 with 5 equiv of ${H(OEt₂)₂} {BAT^F₂₄}$ in thawing 2-MeTHF at −135 °C instead produced a pale lavender solution (Figure 1A) with UV−visible features that are distinct from the oxidation products Fe-N₂ 2 and Fe-N₂⁺ 3. The *in situ* from the oxidation products Fe-N₂ **2** and Fe-N₂⁺ 3. The *in situ* 57 Fe Mössbauer spectrum (Figure 1B) collected on similarly prepared solutions derived from ⁵⁷Fe-enriched 1 evidences a new integer-spin Fe complex (δ = 0.126 mm/s and $\Delta E_{\rm O}$ = 1.484 mm/s) assigned as $Fe=NNH_2^+$ 5 (vide infra), that constitutes \sim 90% of the Fe in solution; Fe-N₂⁺ 3 is present as a minor (∼10%) component. Compound 5 is persistent for hours in solution at temperatures of −78 °C once prepared in this manner but is increasingly unstable as the solution is warmed further.

The isolation of 5 as a crystalline solid free of Fe-containing impurities was facilitated by substitution of the $\text{BAr}_{24}^{\text{F}}$ counteranion with a less-soluble analogue. The reaction of 1 with 3 equiv of trifluoromethanesulfonic acid (HOTf) proceeded similarly at -135 °C, but this compound $(5')$

Figure 1. Spectroscopic data collected in situ on compound 5. (A) UV−visible absorbance spectra of 3, 2, and 5. Spectra were collected in 2-MeTHF at −80 °C. (B) Zero-field ⁵⁷Fe Mössbauer spectra of ⁵⁷Fe-enriched 5 as a 3 mM solution in 2-MeTHF prepared from 1 and collected at 80 K. The minor component (10%) was identified as complex 3 derived from competitive oxidation.

Figure 2. X-ray diffraction crystal structure of 5 and core-atom structures of 5′, 6, and 8 with thermal ellipsoids drawn at 50% probability. Hydrogen atoms (excep for the N−H's), the BAr $^{\text{F}}_{24}$ counteranion of 5, the triflate counteranion of 6, and co-crystallized solvent molecules have been removed for clarity. Refer to the Supporting Information for complete crystallographic details.

Table 1. Crystall[ographic Bond Metric](http://pubs.acs.org/doi/suppl/10.1021/jacs.6b01230/suppl_file/ja6b01230_si_001.pdf)s

could be effectively precipitated out of solution in 49% yield by the addition of pentane at temperatures of −78 °C or lower (Scheme 2). The ⁵⁷Fe Mössbauer spectrum of solid 5' (Supporting Information) reveals a single Fe-containing species [with parame](#page-1-0)ters that are similar to those of 5 in frozen solution [\(Figure 1B\). Solid](http://pubs.acs.org/doi/suppl/10.1021/jacs.6b01230/suppl_file/ja6b01230_si_001.pdf) 5′ displays intense vibrational features at 3207 and 3039 cm⁻¹ that shift to 2380 and 2241 cm⁻¹ in 5'-d₂ [\(prepared](#page-1-0) from the reaction of 1 with DOTf) assigned to N−H stretching frequencies with strong hydrogen bonding interactions.^{11,12} These vibrational features persist in solid samples of 5′ that have been stored for days at −30 °C in the absence of air and moisture.

Characterization of {[SiP^{iPr}₃]Fe=NNH₂}⁺. The stability of 5 and 5′ in solution at −78 °C permitted growth of single crystals suitable for X-ray diffraction, and their respective structures are depicted in Figure 2. The structures differ in that 5 features an independent $Et₂O$ molecule hydrogen bonded to each of the protons of the NNH₂ ligand, and in $5'$ the NNH₂ protons feature tight hydrogen bonding interactions with the triflate anion, and these interactions form the basis of dimeric $(5')₂$ units in the crystal lattice (Supporting Information). The structures are nonetheless highly similar with respect to the FeNNH2 ⁺ subunit; short Fe−[N distances \(](http://pubs.acs.org/doi/suppl/10.1021/jacs.6b01230/suppl_file/ja6b01230_si_001.pdf)∼1.67 Å) are found that reflect substantial Fe−N multiple bond character (Table 1), a characteristic feature of most terminal metal ${\rm hydrostatic} (2-)$ complexes. 6,11 The "N-atoms display linear geometries, and the location of the nitrogen-bound protons in the Fourier difference map [show](#page-5-0)s trigonal-planar ${}^{\beta} \mathrm{N}\textrm{-}$ atoms. The N−N distances (\sim 1.27 Å) are markedly increased from that

Figure 3. NMR spectra of 5' recorded at −60 °C in 9:1 THF-d₈:CD₃CN. (A) ¹⁵N NMR spectrum of ¹⁵N-5'. (B) ³¹P{¹H} NMR spectrum of 5'. (C) Overlaid $^1\rm H$ and $^1\rm H\{^{15}\rm N\}$ NMR spectra of $^{15}\rm N\text{-}5'$. The central feature in the $^1\rm H$ NMR spectrum results from contamination of $^{15}\rm N\text{-}5'$ with the natural abundance 5′.

Figure 4. (A) X-band EPR spectra of Fe=NNH₂ 7 and 7- d_2 , derived from the *in situ* reduction of 5' or $5'$ - d_2 , respectively, with $Cp^*_{2}Co$ (blue); Fe=NNMe₂ 8 and ¹⁵N-8 (green) collected at 77 K in 2-MeTHF glasses. Signals derived from $S = \frac{1}{2}$ Fe-N₂ 2 have been subtracted from the displayed spectra of 7 and 7- d_2 for clarity. (Inset) Prominent features of 8 that differ in ¹⁵N-8. These features arise from hyperfine coupling to single $\rm{^{31}P}$ and single $\rm{^{14/15}N}$ nuclei of comparable magnitude. (B) ⁵⁷Fe Mössbauer spectra of *in situ-*prepared 7 and 8 obtained by subtracting out quadrupole doublet impurities from the raw data. A 50 mT magnetic field was applied (left) perpendicular and (right) parallel to the propagation of γ -beam. The solid lines are theoretical fits to an $S = \frac{1}{2}$ spin Hamiltonian operating in the slow relaxation regime. Refer to the Supporting Information for a detailed discussion and the derived spin Hamiltonian parameters.

displayed by ${Na(12-crown-4)_2}{[SiP^{iPr}₃]Fe(N₂)}$ ${Na(12-crown-4)_2}{[SiP^{iPr}₃]Fe(N₂)}$ ${Na(12-crown-4)_2}{[SiP^{iPr}₃]Fe(N₂)}$ $(1.132(4)$ Å) and 1 (1.146(4) Å) (Supporting Information).^{9a} The N-N distance in 5′ correlates with a broad feature centered at 1443 cm[−]¹ in the IR spectrum [that shifts to 1401 cm](http://pubs.acs.org/doi/suppl/10.1021/jacs.6b01230/suppl_file/ja6b01230_si_001.pdf)[−]¹ [in](#page-5-0) 15N-5′ and is assigned to the $\nu(NN)$ stretching frequency. IR features of similar energy have been observed in Mo- and $W = NNH₂$ complexes.¹¹ While a number of X-ray diffraction studies on mononuclear¹³ and dinuclear¹⁴ Fe complexes that support the isomeric di[az](#page-5-0)ene ligand (HN=NH) have been disclosed, 5 and 5′ are the fir[st](#page-5-0) crystallographi[ca](#page-5-0)lly characterized complexes that contain a terminal $Fe=NNH₂$ unit. The structural parameters they reveal are consistent with those recently deduced from XAS and ENDOR spectroscopies for the catalytically relevant
species $[TPR]E_0$ —NNH $+7$ species, $[\text{TPB}] \text{Fe} = \text{NNH}_2^+$.

Although Fe=NNH_{2}^{+} S' is a stable solid, solutions of S' decompose at temperatures [o](#page-5-0)f 0 °C and higher to an intractable mixture of Fe-containing species. Seeking to prepare a more stable analogue of $5'$, we reacted 1 with excess MeOTf at -78 °C which, upon warming the reaction mixture to room temperature, precipitated $\{[\text{SiP}^{iPr}_3]\text{Fe}(\text{NNMe}_2)\}\{\text{OTf}\}$ (6) as a purple solid. Unlike the isoelectronic $Fe=NNH_2^+$ species, $Fe=NNMe_2^+$ 6 is quite stable both in the solid state and in

solution. The relevant metrical data derived from the solid-state crystal structure of 6 (Figure 2) are similar to those of 5′ (Table 1).

Compounds 5′ and 6 exhibit diamagnetic ground [states,](#page-2-0) [p](#page-2-0)ermitting their furth[er](#page-2-0) [charac](#page-2-0)terization by multinuclear NMR spectroscopies (Figure $3A,B,C$).¹⁵ A single broad resonance is found in the ${}^{31}P{^1H}$ NMR spectrum of 5' (Figure 3B), consistent wit[h averag](#page-2-0)ed 3-[fo](#page-5-0)ld symmetry in solution. Compound $15N-5'$ exhibits two resonances in the $15N NMR$ $15N NMR$ spectrum at δ = 518 and 198 ppm, corresponding to the "N- and ${}^{\beta}$ N-atoms, respectively (Figure 3A).^{6b,16} The resonance at δ = 198 ppm appears as a triplet of doublets $(^1J_{\text{NH}} = 96 \text{ Hz}, ^1J_{\text{NN}} =$ 11 Hz) whereas the fe[ature at 5](#page-2-0)18 [ppm](#page-5-0) is broadened due to unresolved coupling to the phosphine ligands. In the ¹H NMR spectrum (Figure 3C), ¹⁵N-5' displays a broad doublet (${}^{1}J_{\text{NH}}$ = 97 Hz) at δ = 9.5 ppm assigned to the NNH₂ protons. The magnitude [of the](#page-2-0) $^{1}J_{\text{NH}}$ coupling constant in 5' is consistent with sp^2 hybridization at the βN -atom¹⁷ and similar to that found in other terminal metal-hydrazido(2−) complexes.^{6b,16} These data confirm that the structure of 5[′](#page-5-0) found in the solid state is maintained in solution. Related NMR data for 6 [are](#page-5-0) provided in the Supporting Information.

Redox Chemistry of $\left[$ SiP^{iPr}₃]Fe=NNR₂⁺. The intermediacy of $Fe=NNH_2^+$ 5' in the formation of NH_3 requires add[itional](http://pubs.acs.org/doi/suppl/10.1021/jacs.6b01230/suppl_file/ja6b01230_si_001.pdf) [proton](http://pubs.acs.org/doi/suppl/10.1021/jacs.6b01230/suppl_file/ja6b01230_si_001.pdf) [or](http://pubs.acs.org/doi/suppl/10.1021/jacs.6b01230/suppl_file/ja6b01230_si_001.pdf) [electro](http://pubs.acs.org/doi/suppl/10.1021/jacs.6b01230/suppl_file/ja6b01230_si_001.pdf)n equivalents. Both 5 and 5′ were found to be stable at −78 °C to the presence of additional proton equivalents; we therefore explored the one-electron reduction chemistry of $5'$ and $Fe=NNMe₂⁺$ 6 to generate neutral $\left[\text{SiP}_{3}^{\text{iPr}}\right]$ Fe=NNH₂ (7) and its methylated derivative $\left[\text{SiP}^{\text{iPr}}_{3}\right]\text{Fe}=NNM\text{e}_2$ (8), respectively. Cyclic voltammetry measurements on THF electrolytes of Fe=NNMe₂⁺ 6 reveal a reversible reduction event at −1.73 V (Supporting Information). The chemical reduction of 6 with 1 equiv of Na(Hg) (Scheme 2) and subsequent worku[p furnished](http://pubs.acs.org/doi/suppl/10.1021/jacs.6b01230/suppl_file/ja6b01230_si_001.pdf) [paramagneti](http://pubs.acs.org/doi/suppl/10.1021/jacs.6b01230/suppl_file/ja6b01230_si_001.pdf)c 8, whose crystal structure (Figure 2) shows a lengthened Fe−N distance (from 1.69 to 1.77 Å) concomitant with subst[antial](#page-1-0) [bendi](#page-1-0)ng at the "N-atom [from 175](#page-2-0)° to 159° (Table 1). The ${}^{\beta}$ N-atom retains sp² hybridization, and the N-N bond length is essentially unchanged. The X-band EPR s[pectrum](#page-2-0) of 8 indicates an $S = \frac{1}{2}$ ground state (Figure 4A, g_{avg} = 2.04), consistent with its room temperature magnetic moment in C_6D_6 ($\mu_{\text{eff}} = 1.7\mu_{\text{B}}$). Magnetically perturbed ⁵⁷Fe Mössbauer studies of 8 (Figure 4B) demonstrate strong ⁵⁷Fe hyperfine coupling and much slower relaxation properties compared to Fe-N₂ 2 (Supporting Information); distinctive features that span a range of 5 mm/s at temperatures of 80 K and lower are observed.

Fe $=$ NNH₂ 7 is far [less](http://pubs.acs.org/doi/suppl/10.1021/jacs.6b01230/suppl_file/ja6b01230_si_001.pdf) [stable](http://pubs.acs.org/doi/suppl/10.1021/jacs.6b01230/suppl_file/ja6b01230_si_001.pdf) [than](http://pubs.acs.org/doi/suppl/10.1021/jacs.6b01230/suppl_file/ja6b01230_si_001.pdf) 8 and required characterization at cryogenic temperatures. Compound 5′ reacted with $Cp*_{2}Co$ in 2-MeTHF at -135 °C to produce dark brown solutions that rapidly bleached when warmed to −78 °C or higher temperatures (vide infra). EPR (Figure 4A) and 57Fe Mö ssbauer spectra (Figure 4B) collected on similarly prepared frozen reaction mixtures derived from 5′ confirmed the generation of a new S = $\frac{1}{2}$ species (g_{avg} = 2.04) as the major Fe-containing component. Notably, the ⁵⁷Fe Mössbauer spectrum of this complex is nearly identical to that displayed by Fe $=$ NNMe₂ 8, allowing us to assign it as the isoelectronic species 7. Accordingly, the theoretically predicted gas-phase optimized geometry and electronic structure of 7 are very similar to those of 8 (Supporting Information). Compounds 7 and 8 are predicted to have substantial radical character on the NNR₂ and phosphine lig[ands, as also evident fr](http://pubs.acs.org/doi/suppl/10.1021/jacs.6b01230/suppl_file/ja6b01230_si_001.pdf)om their respective EPR

Scheme 3. Comparison of the Reaction Products Observed in the Reduction of (A) Fe=NNH₂⁺ 5' and (B) Mo=NNH₂⁺ Supported by the Tri(amido)amine $[HIPTN_3N]^{3-}$ Ligand Framework¹⁹

data. Differences between the X-band EPR spectra of ¹⁵N-8 and 8 establish strong hyperfine coupling (ca. 30 MHz) to a single N-atom (Inset of Figure 4A). In addition, marked differences in the EPR spectra of Fe=NNH₂ 7 and Fe=NND₂ 7- d_2 demonstrate signifi[cant h](#page-3-0)yperfine coupling to one or both nitrogen-bound H-atom (s) ; this value is estimated to be as high as 25 MHz through analysis of the second derivative EPR spectrum at g_2 and g_3 (Supporting Information). The related S = λ_2 {[TPB]Fe=NNH₂}⁺ exhibited ¹H hyperfine coupling as large as 18 MHz between g_2 and g_3 .⁷

Conversion of ${\sf [SiP}^{\sf iPr}{}_3]{\sf Fe}$ ${\sf [SiP}^{\sf iPr}{}_3]{\sf Fe}$ ${\sf [SiP}^{\sf iPr}{}_3]{\sf Fe}$ $=$ ${\sf NNH}_2^+$ to ${\sf [SiP}^{\sf iPr}{}_3]{\sf Fe}$ $NH_2NH_2^+$. Upon warming to te[mp](#page-5-0)eratures of -78 °C and higher, solutions that contain Fe=NNH₂ 7 and Fe=NNH₂⁺ 5' undergo a spontaneous disproportionation to a mixture of Fe species that include the previously reported iron hydrazine complex, $\{[\text{SiP}^{\text{IP}}_3]\text{Fe(NH}_2\text{NH}_2)\}\{\text{OTf}\}\$ (9), as a major component. Thawing THF solutions of 5′ were combined with stoichiometric $Cp*_{2}C$ o and allowed to [wa](#page-5-0)rm slowly to room temperature over 10 min. After minimal workup, NMR analyses of the resulting mixtures (Supporting Information) revealed the formation of roughly equal amounts of Fe- $NH₂NH₂⁺$ 9 and Fe-N₂ 2 as major [products, alongside smal](http://pubs.acs.org/doi/suppl/10.1021/jacs.6b01230/suppl_file/ja6b01230_si_001.pdf)l amounts of $\left[\text{SiP}^{\text{iPr}}_3\right]\text{Fe(OTf)}$ (10) and $\left\{\left[\text{SiP}^{\text{iPr}}_3\right]\text{Fe(NH}_3)\right\}$ - ${OTf}$ $(11).^{9a}$ 9 was also detected in a one-pot reaction from Fe-N₂ $-$ 1 via the sequential addition of 2 equiv of HOTf and 0.5 equiv of $Cp*₂Co$ $Cp*₂Co$ $Cp*₂Co$ to 1 in 2-MeTHF at −135 °C. Significant quantities of free N_2H_4 (0.53(6) equiv per Fe) and NH_3 $(0.16(2)$ equiv) were detected when these reaction mixtures were quenched with HCl 10 min after warming. This product distribution was found to be time dependent: reaction mixtures quenched after standing at room temperature for 24 h revealed the presence of 0.27(6) equiv of N_2H_4 and 0.39(5) equiv of NH_3 , establishing further conversion of N_2H_4 to NH_3 in these mixtures.

The overall formation of both N_2H_4 and NH_3 from an Fe= $NNH_2^{\dagger}/Fe = NMH_2$ redox pair is interesting, given that the complex $\left[\text{SiP}^{\text{Ph}}_{3}\right]\text{Fe(N)}_{2}$ was previously observed to liberate significant amounts of N_2H_4 upon exposure to $HBF_4(Et_2O)$ and

 $CrCl₂$ ¹⁸ whereas the anion $\{ [SiP^{iPr}_{3}]Fe(N₂)\}^-$ was instead observed to liberate $NH₃$ in the presence of $KC₈$ and $\{H(OEt_2)_2\}\{BAr_{24}^F\}$ $\{H(OEt_2)_2\}\{BAr_{24}^F\}$ $\{H(OEt_2)_2\}\{BAr_{24}^F\}$; N_2H_4 is anticipated to gradually degrade to $NH₃$ under the latter conditions⁵ and hence, even if formed as an intermediate prod[uc](#page-5-0)t, its concentration may not build up.

The formation of the Fe-contai[ni](#page-5-0)ng products Fe-NH₂NH₂⁺ 9 and Fe- N_2 2 can most simply be rationalized by the reaction sequence shown in Scheme 3. As discussed above, 57 Fe Mö ssbauer and EPR studies indicate that 5′ is reduced by $Cp_{2}^{*}Co$ to generate neutral Fe=NNH₂ 7 at temperatures as low as −135 °C. At higher temperatures, we speculate that in situ-generated 7 reacts bimolecularly with remaining 5′ in solution. Exchange of H⁺ and e[−] equivalents between these two compounds results in the formation of neutral Fe-N₂ 2 and cationic $\text{Fe-NH}_{2}\text{NH}_{2}^{+}$ 9 as the overall reaction products. Whereas 2 is stable to the presence of $Cp^*_{2}Co$, 9 is slowly reduced by Cp^* , Co to afford detectable quantities of NH₃ and thereby a mixture of 2 and Fe-OTf 10. DFT studies predict that the conversion of $5'$ + 7 \rightarrow 2 + 9 is highly exergonic (-45 kcal/ mol) (Supporting Information).

■ **C[ONCLUSIONS](http://pubs.acs.org/doi/suppl/10.1021/jacs.6b01230/suppl_file/ja6b01230_si_001.pdf)**

The present study has described the thorough characterization, including the first crystallographic evidence, of a terminally bonded Fe $=$ NNH₂ species via the X-ray structures of 5 and $5'$; these complexes are derived from the activation and protonation of N_2 coordinated to iron. Numerous examples of iron oxos, nitrides, and imides featuring strong, covalent iron-to-ligand multiples bonds have been characterized in the past 15 years.²⁰ The possibility to use such covalency as a strategy for N_2 reduction to $NH₃$ is a plausible one, and the stoichiomet[ric](#page-5-0) chemistry established with the present tris(phosphino)silyl iron system underscores this point. Our ability to isolate diamagnetic $\left[\text{SiP}_{3}^{\text{iPr}}\right]$ Fe=NNH₂⁺ and its more stable methylated analogue, $\left[\textrm{SiP}_{3}^{\textrm{iPr}}\right]\textrm{Fe=NNMe}_{2}^{+}$, enables their thorough characterization and also a study of their one-electron reduction chemistry. The stable $S = \frac{1}{2}$ complex $\left[\text{SiP}^{\text{ip}} \right]$ Fe=NNMe₂ has been structurally characterized, and its other spectroscopic parame-

ters are very similar to those of the far less stable $S = \frac{1}{2}$ species $[SiP^{iP_{r}}_{3}]Fe=NNH_{2}$, which must instead be characterized at very low temperature. Each $S = \frac{1}{2}$ species evidences significant spin-leakage onto the hydrazido ligand.

A fascinating transformation occurs as solutions containing in situ-generated $\bar{\rm [SiP^{iPr}_3]}$ Fe=NNH₂ and $\bar{\rm [SiP^{iPr}_3]}$ Fe=NNH₂⁺ are allowed to warm, disproportionating to $\left[\mathrm{SiP^{iPr_{3}}}\right]\mathrm{Fe\text{-}NH_{2}NH_{2}^+}$ and $\left[\textrm{SiP}^{\textrm{iPr}}_{\mathbf{3}}\right]$ Fe-N₂. Some $\left[\textrm{SiP}^{\textrm{iPr}}_{\mathbf{3}}\right]$ Fe-NH₃⁺ is also produced in this process; we had previously shown that $\left[\text{SiP}^{\text{IP}}\right]$ Fe- $\mathrm{NH}_2\mathrm{NH}_2^+$ can liberate $\mathrm{[SiP^{iPr}_3]Fe\text{-}NH_3^+}$ and free NH_3 in solution.^{$\bar{5}$} Hence, these collective observations show that ironbound N_2 can be protonated to generate a distal⁸ intermediate, $\left[\textrm{SiP}_{3}^{\textrm{iPr}}\right]\textrm{Fe=NNH}_{2}^{+}$, and further reduced/disproportionated to an alternating intermediate, 8 $\left[$ SiP^{iPr}₃ $\right]$ Fe-NH₂NH₂⁺, that serves as a source of NH₃ via late-stage N−N cleavage. The conversion of N_2 to NH_3 via an N_2H_4 intermediate therefore does not require an alternating pathway; it can instead be initiated along a distal pathway. Such a scenario is distinct from the early stage N−N cleavage pathway to generate terminal nitrides that is thought to occur in the molybdenum N_2 reduction catalysts of Schrock and Nishibayashi, respectively.⁴

The catalytically relevant [TPB]Fe- N_2^- system is thought to proceed via a distal $S = \frac{1}{2} [\text{TPB}] \text{Fe} = \text{NNH}_2^+$ intermediate.⁷ This species cannot be isolated owing to its greater instability and the presence of additional iron components, and it remains unclear whether $NH₃$ production in this case derives from similar late-stage cleavage to first produce N_2H_4 , akin to $\left[\text{SiP}^{\mu r_3}\right]$ Fe=NNH₂, or if an early-stage cleavage pathway instead generates a terminal iron-bound nitride, such as $[TPB]Fe \equiv N$ or $(TPB)Fe \equiv N^{+}$. The greater flexibility of the Fe−B bond relative to the Fe−Si bond may afford access to different intermediates. However, that $\left[\mathrm{SiP^{iPr}_{3}}\right]\!\mathrm{Fe}\text{-}\mathrm{N_2}^{-}$ generates appreciable amounts of $NH₃$ under the same conditions as $[TPB]Fe-N₂⁻$, and that its isostructural carbon analogue $[CP^{iPr}_3]Fe-N_2^-$ is a catalyst for N_2 -to-NH₃ conversion but is not as flexible as the [TPB]Fe system,^{5b} suggests the possibility and perhaps likelihood of a unifying distal-to-alternating mechanistic sequence en route to $NH₃$ for these three iron systems.

While we have here demonstrated the viability of a hybrid distal-to-alternating reaction pathway for $NH₃$ generation via N_2H_4 , we still caution that different Fe-mediated N_2 reduction systems, with variable reaction conditions, may sample alternative pathways.

■ ASSOCIATED CONTENT

6 Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.6b01230.

Detailed experimental, spectroscopic, and theoretical data [\(PDF\)](http://pubs.acs.org)

X-ray crystallographic data for 1, 5, 5[′](http://pubs.acs.org/doi/abs/10.1021/jacs.6b01230), 6, and 8 (CIF)

■ A[UTHO](http://pubs.acs.org/doi/suppl/10.1021/jacs.6b01230/suppl_file/ja6b01230_si_001.pdf)R INFORMATION

Corresponding Author

*jpeters@caltech.edu

Notes

[The authors declare n](mailto:jpeters@caltech.edu)o competing financial interest.

■ ACKNOWLEDGMENTS

This work was supported by the NIH (GM 070757) and the Gordon and Betty Moore Foundation. J.R. was additionally

supported by a fellowship from the Caltech Center for Environmental Microbial Interactions (CEMI).

■ REFERENCES

(1) Howard, J. B.; Rees, D. C. Chem. Rev. 1996, 96, 2965−2982.

(2) (a) Lancaster, K. M.; Roemelt, M.; Ettenhuber, P.; Hu, Y.; Ribbe, M. W.; Neese, F.; Bergmann, U.; DeBeer, S. Science 2011, 334, 974− 977. (b) Seefeldt, L. C.; Hoffman, B. M.; Dean, D. R. Annu. Rev. Biochem. 2009, 78, 701−722. (c) Spatzal, T.; Perez, K. A.; Einsle, O.; Howard, J. B.; Rees, D. C. Science 2014, 345, 1620−1623. (d) Hinnemann, B.; Norskov, J. K. Top. Catal. 2006, 37, 55−70.

(3) (a) Schrock, R. R. Acc. Chem. Res. 2005, 38, 955−962. (b) Nishibayashi, Y. Inorg. Chem. 2015, 54, 9234−9247. (c) McWilliams, S. F.; Holland, P. L. Acc. Chem. Res. 2015, 48, 2059−2065.

(4) (a) Yandulov, D. V.; Schrock, R. R. Science 2003, 301, 76−78. (b) Arashiba, K.; Kinoshita, E.; Kuriyama, S.; Eizawa, A.; Nakajima, K.; Tanaka, H.; Yoshizawa, K.; Nishibayashi, Y. J. Am. Chem. Soc. 2015, 137, 5666−5669. (c) Arashiba, K.; Miyake, Y.; Nishibayashi, Y. Nat. Chem. 2011, 3, 120−125.

(5) (a) Anderson, J. S.; Rittle, J.; Peters, J. C. Nature 2013, 501, 84− 87. (b) Creutz, S. E.; Peters, J. C. J. Am. Chem. Soc. 2014, 136, 1105− 1115. (c) Ung, G.; Peters, J. C. Angew. Chem., Int. Ed. 2015, 54, 532− 535.

(6) (a) Chatt, J.; Dilworth, J. R.; Richards, R. L. Chem. Rev. 1978, 78, 589−625. (b) Yandulov, D. V.; Schrock, R. R. J. Am. Chem. Soc. 2002, 124, 6252−6253. (c) Hidai, M.; Mizobe, Y. Chem. Rev. 1995, 95, 1115− 1133.

(7) Anderson, J. S.; Cutsail, G. E.; Rittle, J.; Connor, B. A.; Gunderson, W. A.; Zhang, L.; Hoffman, B. M.; Peters, J. C. J. Am. Chem. Soc. 2015, 137, 7803−7809.

(8) Hoffman, B. M.; Lukoyanov, D.; Dean, D. R.; Seefeldt, L. C. Acc. Chem. Res. 2013, 46, 587−595.

(9) (a) Lee, Y.; Mankad, N. P.; Peters, J. C. Nat. Chem. 2010, 2, 558− 565. (b) Mankad, N. P.; Muller, P.; Peters, J. C. J. Am. Chem. Soc. 2010, 132, 4083−4085. (c) Lee, Y.; Peters, J. C. J. Am. Chem. Soc. 2011, 133, 4438−4446.

(10) Fong, H.; Moret, M.-E.; Lee, Y.; Peters, J. C. Organometallics 2013, 32, 3053−3062.

(11) Lehnert, N.; Tuczek, F. Inorg. Chem. 1999, 38, 1659−1670.

(12) Steiner, T. Angew. Chem., Int. Ed. 2002, 41, 48−76.

(13) Field, L. D.; Li, H. L.; Dalgarno, S. J.; Turner, P. Chem. Commun. 2008, 1680−1682.

(14) (a) Sellmann, D.; Soglowek, W.; Knoch, F.; Moll, M. Angew. Chem., Int. Ed. Engl. 1989, 28, 1271−1272. (b) Saouma, C. T.; Muller, P.; Peters, J. C. J. Am. Chem. Soc. 2009, 131, 10358−10359. (c) Li, Y.; Li, Y.; Wang, B.; Luo, Y.; Yang, D.; Tong, P.; Zhao, J.; Luo, L.; Zhou, Y.; Chen, S.; Cheng, F.; Qu, J. Nat. Chem. 2013, 5, 320−326.

(15) Solutions of 6 display temperature-dependent paramagnetism consistent with a low-lying triplet state (see Supporting Information for additional details).

(16) Donovan-Mtunzi, S.; Richards, R. [L.; Mason, J.](http://pubs.acs.org/doi/suppl/10.1021/jacs.6b01230/suppl_file/ja6b01230_si_001.pdf) J. Chem. Soc., Dalton Trans. 1984, 1329−1332.

(17) Binsch, G.; Lambert, J. B.; Roberts, B. W.; Roberts, J. D. J. Am. Chem. Soc. 1964, 86, 5564−5570.

(18) Mankad, N. P.; Whited, M. T.; Peters, J. C. Angew. Chem., Int. Ed. 2007, 46, 5768−5771.

(19) (a) Yandulov, D. V.; Schrock, R. R. Inorg. Chem. 2005, 44, 1103−

1117. (b) Schrock, R. R. Angew. Chem., Int. Ed. 2008, 47, 5512−5522. (c) Schenk, S.; Le Guennic, B.; Kirchner, B.; Reiher, M. Inorg. Chem. 2008, 47, 3634−3650.

(20) (a) Saouma, C. T.; Peters, J. C. Coord. Chem. Rev. 2011, 255, 920−937. (b) Hohenberger, J.; Ray, K.; Meyer, K. Nat. Commun. 2012, 3, 720.